

Catálise: Inovando para a mudança Bilbau, 23-27/09/24 Palácio Euskalduna

XXIX Congresso Ibero-Americano de Catálise – BILBAU 2024

EVALUATION OF PHOTOCATALYTIC PERFORMANCE OF HYDROGEN **PRODUCTION FROM GLYCEROL**

Erick Oliveira, Emanoel Sousa, Mayara Oliveira,, Matheus Porto, Lucas Nascimento, Rinaldo Araújo, Bruno Salgado*

Instituto Federal do Ceará (IFCE), Maracanaú, Ceará, Brasil. *brunocesar@ifce.edu.br

INTRODUCTION

Photocatalytic performance

Evaluation of the variables of the photocatalytic process in the H_2 production

Pt (%, m/m)	Temperature (°C)	рН	H₂ (mmol.g⁻¹)
0.3	20	3.0	11.82
0.3	40	10.0	23.63
0.3	60	6.5	69.90
0.5	20	10.0	13.13
0.5	40	6.5	35.45
0.5	60	3.0	30.86
0.7	20	6.5	13.79
0.7	40	3.0	24.95
0.7	60	10.0	42.02

Glycerol: 10% (v/v). Catalyst: 0.4 g/L. t = 3h.

EXPERIMENTAL

Synthesis of photocatalyst and immobilization on glass plate

Fig. 2. (a) Profile of photocatalytic hydrogen production and (b) TON, with application of the catalyst in suspension and immobilized on a plate. Glycerol: 10% (v/v), Pt = 0.3%(m/m), temperature: 60°C.

Photocatalytic reaction

RESULTS

3.5 hv (eV)

Fig. 3. (a) Microscopy image of thickness and (b) diffuse reflectance profiles of $TiO_2@Pt_X$ catalysts (x = 0.3, 0.5 and 0.7%)

CONCLUSIONS

The optimization of process variables revealed that temperature was the most relevant factor for hydrogen production. Furthermore, it was observed that a pH condition close to neutrality was favorable to the photocatalytic process

The catalysts in suspension and immobilized on plates showed similar results. However, the catalyst dispersed in powder demonstrated a more constant and continuous production profile.

The results suggest that immobilizing the catalyst on plates can provide a scalable solution for the photocatalytic process, minimizing costs and time associated with applying the catalyst in powder form.

ACKNOWLEDGMENTS

Fig. 1. Response surface of photocatalytic H_2 production. Glycerol: 10% (v/v).

PESOUISA E INOVAÇÃO EM ENERGIAS RENOVÂVE